Automated identification of crystallographic ligands using sparse-density representations
نویسندگان
چکیده
منابع مشابه
Automated identification of crystallographic ligands using sparse-density representations
A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental ...
متن کاملImage Denoising Using Sparse Representations
The problem of removing white zero-mean Gaussian noise from an image is an interesting inverse problem to be investigated in this paper through sparse and redundant representations. However, finding the sparsest possible solution in the noise scenario was of great debate among the researchers. In this paper we make use of new approach to solve this problem and show that it is comparable with th...
متن کاملAutomated crystallographic ligand building using the medial axis transform of an electron-density isosurface.
Automatic fitting methods that build molecules into electron-density maps usually fail below 3.5 A resolution. As a first step towards addressing this problem, an algorithm has been developed using an approximation of the medial axis to simplify an electron-density isosurface. This approximation captures the central axis of the isosurface with a graph which is then matched against a graph of th...
متن کاملSparse Density Representations for Simultaneous Inference on Large Spatial Datasets
Large spatial datasets often represent a number of spatial point processes generated by distinct entities or classes of events. When crossed with covariates, such as discrete time buckets, this can quickly result in a data set with millions of individual density estimates. Applications that require simultaneous access to a substantial subset of these estimates become resource constrained when d...
متن کاملUncertainty Principles and Sparse Signal Representations Using Overcomplete Representations
This discussion sparse representations of signals in R. The sparsity of a signal is quantified by the number of nonzero components in its representation. Such representations of signals are useful in signal processing, lossy source coding, image processing, etc. We first speak of an uncertainty principle regarding the sparsity of any two different orthonormal basis representations of a signal S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Crystallographica Section D Biological Crystallography
سال: 2014
ISSN: 1399-0047
DOI: 10.1107/s1399004714008578